CHAPTER 6

STATI STI CAL  CONCEPTS

| NTRODUCTI ON

As we nentioned in Chapter 5, our assunptions about a given testing situation
lead us to the choice of a mathematical nodel to characterize the reliability
of a system  However, we cannot deternmne the actual reliability of the sys-
tem using the nodel until the paraneters of the nodel, p for the binom al
model and A (or 8) for the Poisson or exponential nodel, have been specified.
The val ues of the parameters are never known wth absolute certainty. As a
consequence, sone form of sampling or testing is required to obtain estinates

for these paraneters. The quality of the estimates is, of course, directly
related to the quality and size of the sanple.

PO NT _ESTI MATES

point estimates represent a single “best guess” about model parameters, based
on the sanple data. A distinguishing synbol conmonly is used to designate the
estimate of a parameter. Mpst commonly, a caret or “hat” is used to designate
point estimates (e.g., &, R(x), A). Quite often, and for our pur poses, the
caret further indicates that the estinmator is a maxinmum |ikelihood estimator;
that is, it is the nost likely value of the paraneter of the nodel which is
presuned to have generated the actual data.

There are criteria other than maxi num |ikelihood used for a single “best
guess.” One other is unbiasedness. For an estimator to be unbiased, we nean
that, in the long run, it will have no tendency toward estinating either too
high or too low.  The point estimtes which we propose for p in the binom al

model and for A in the Poisson and exponential nobdels are both maximumlikeli -
hood and unbi ased.

CONFI DENCE STATEMENTS

Point estimates represent a single “best guess” about paraneters, based on a
single sanple. The actual conputed values could greatly overestimate or
underestinmate the true reliability parameters, particularly if they are based

on a small anount of data. As an exanple, suppose that 20 rounds of ammuni -
tion were tested and 18 fired successfully.

The maxi mum |ikelihood and unbiased estimate of reliability is R = 18/20 =
0.9. In other words, the systemnost likely to have generated 18 successes is
one whose reliability is 0.9. Note that 0.9 is the percentage of successes
actually observed in the sanple. However, a systemwhose true reliability is
somewhat | ess than or somewhat nore than 0.9 could reasonably have generated
this particular data set.

W use confidence limts to address how high or | ow the val ue of a paraneter

could reasonably be. A 90% confidence interval for reliability is: 0.717 <R
<0.982. In other words, if being reasonable signifies being 90% confident of

6-1



being right, then it is unreasonable to consider that a system whose reli-
ability is actually less than 0.717 or one whose reliability is actually nore

than 0.982 generated the 18 successful rounds . \When we desire to be nore
confident, say 95% confident, that our interval conta ins the true system
reliability, we widen our interval, i.e. , we expand the group of systens

consi dered to have reasonably generated the data. A 95% confidence interval
for the reliability of our exanple systemis: 0.683 < R < 0.988. Since we
are now allowng for the possibility that the systemreliability could be a

little lower than 0.717 -- nanely, as low as 0.683 -- or a little higher than
0.982 -- nanely, as high as 0.988 -- we car now afford to be nore confident
that our interval indeed contains the true val ue. For a fixed amount of

testing, we can only increase our confidence by w dening the interval of
reasonabl e val ues.

Suppose that we desire to reduce the size of the interval while naintaining
the sane | evel of confidence or to increase the level of confidence while
mai ntai ning approximately the same size interval. Either of these objectives
I s acconplished through increased testing, i.e., taking a larger sanple. If
the systemtest had resulted in 27 successful firings out of 30 attenpts (vice
18 out of 20) , the point estimate is still 0.9. However, the 90% confidence
interval for systemreliability is: 0.761 < R< 0.972. The length of this
interval represents a 20% reduction in the length of the 90% confidence inter-
val resulting fromour test of 20 units. The 95% confidence interval for
system reliability is: 0.734 < R < 0.979. This interval represents an 8%
reduction in size, but our confidence has increased to 95%. Figure 6-1 graph-

ically portrays the effect on interval length induced by changi ng confidence
| evel s or increasing sanple size.

FIGURE 6-1 CONFIDENCE INTERVALS
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A cautious, conservative person who buys safe investments, wears a belt and
suspenders, and qualifies his statenents carefully is operating on a high-
confidence level. He is certain he won't be wong very often. If he is wong
once in 100 times, he is operating on a 99% confidence level. A less con-
servative person who takes nmore chances will be wong nore often, and hence he
operates o-n a |ower confidence |evel. |f he I's wrong once in 20 times, he is
operating on a 95% confidence |level. The confidence level, therefore, nerely
specifies the percentage of the statenents that a person expects to be cor-
rect. | f the experinenter selects a confidence level that is too high, the
test programw |l be prohibitively expensive before any very precise con
clusions are reached. If the confidence level is too |ow, precise conclusions
w Il be reached easily, but these conclusions will be wong too frequently,
and, in turn, too expensive if a large quantity of the itemis made on the
basi s of erroneous concl usions. There is no ready answer to this dilemm.

We can interpret confidence statenents using the concept of risk. Wth a 90%
confidence statenment, there is a 10%risk; wth a 99% confidence statenent,
there is a 1% risk. Confidence intervals generally are constructed so that
hal f of the total risk is associated with each limt or extreme of the inter-
val. Using this approach with a 90% interval for reliability, there is a 5%
risk that the true reliability is belowthe lower [imt and also a 5%risk
that the true reliability is above the upper limt. We can therefore state
for the exanple systemwth 18 of 20 successes that we are 95% confident that:
R > 0.717. This is a |lower confidence [imt statenent. W are al so 95%

confident that: R < 0.982. This is an upper confidence lint statenent. See
Figure 6-2.
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The cl assical textbook approach to confidence intervals has been to specify
the desired confidence level and determ ne the limit associated with t hi S
confidence |evel. This approach creates a twfold problem First, the de-
sired confidence level has to be determ ned. Second, the limts that are
generated are generally not, in thenselves, values of direct interest. A very
practical nodification is to determne the [evel of confidence associated with
a predetermned limt value. For exanple, the mninmumvalue of a reliability
measure that is acceptable to the user is a logical |ower limit. The con-
fidence in this value can then be interpreted as the assurance that the user’ s
needs are net. See Figure 6-3.

6- 3



FIGURE 6-3 CONFIDENCE INTERVALS- ACCEPTABLE LOWER LIMITS
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The confidence level for a lower Iimt of 0.8 is 81% A systemreliability of
0.8 is the user’ s mninum acceptable val ue (MAV) .

HYPOTHESI S _TESTI NG

VWi le confidence Iimts are generally used to define the uncertainty of a pa-
rameter value, an alternative approach is hypothesis testing. Both approaches
essentially give the sanme information. Hypothesis testing can be used to dis-
tinguish between two values or two sets of values for the proportion of fail-
ures in a binomal experinent, or for the failure rate in a Poisson/
exponential experiment. Let us exam ne hypothesis testing using a binom al
exanpl e. Typically, for a binomal experiment, it is hypothesized that the
probability of failure, p, is a specified value. Wiile there is seldom any
belief that p is actually equal to that value, there are values of p which
woul d be considered unacceptable in a devel opment program  These unacceptabl e
val ues are specified in an alternative hypothesis. Consi der the follow ng
exanpl es.

(1) One-Sided Tests

o P = 0.3 (Nul'l Hypot hesi s)

H,op> 0.3 (Alternative Hypothesis)

In Case (1) , the evaluator hopes that p is no nore than 0.3. He considers a p
of nmore than 0.3 to be unacceptable. This is a classical one-sided test.
Anot her type of one-sided test has the alternative hypothesis p < 0.3.

(2) Two- Sided Tests

‘0: p =03
le p # 03
In Case (2) , the evaluator hopes that p is approximately 0.3. Values of p

much larger than or nuch smaller than O 3 are unacceptable. This is a clas-
sical two-sided test.
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B)Sinple vs. Sinple Tests

| n Case 3, the evaluator hopes that p is no nore than 0.3. He considers a p
of nore than 0.5 to: be unacceptable. The region between 0.3 and 0.5 is an
indifference region in that it represents acceptable but not hoped for val ues.
This is actually a classical sinple versus sinple test. This type of test is
treated extensively and exclusively in Chapter 8.

In order to conduct a statistical test of hypothesis, the follow ng steps are
enpl oyed:

1. The hypothesis, null and alternative, are specified. For our purposes,
the null hypothesis is the contractually specified value (SV) and the
alternative hypothesis is the mninum acceptable val ue (MAV).

2. A sanple size, n, is determned. This value Dust be |large enough to
allow us to distinguish between the SV and MAV. Chapter 8 is devoted to
procedures for determning a sufficiently large value of n.

3. An accept/reject criterion is established. For our purposes, this
criterion is established by specifying a value ¢, which is the maxi num
nunber of failures permtted before a systemw /!l be rejected.

4, The sanple is taken and the hypothesis is chosen based upon the accept/
reject criterion. If ¢ or fewer failures occur, we accept the system.
|f more than ¢ failures occur, we reject the system

PRODUCER ° S AND CONSUMER S RI SKS

There are two possible errors in making a hypothesis-testing decision. W can
choose the alternative hypothesis, thereby rejecting the null hypothesis,
when, in fact, the null hypothesis is true. The chance or probability of this
occurring is called the producer’s risk, a. On the other hand, we can choose
the null hypothesis, i.e., accept it as reasonable, when in fact the alter’
native hypothesis is true. The chance or probability of this occurring is

termed the consumer’s risk, B. See Chapter 8 for an additional discussion of
this topic.

Consider the followng: A systemis under developnent. It is desired that it
have a 300- hour MTBF. However, an MIBF of |ess than 150 hours is unaccept-
able, i.e. , the MAV is 150 hours. How would we set up a hypothesis test to
determ ne the acceptability of this new systenf Qur null hypothesis (desired
value) is that the MIBF is 300 hours. Qur alternative hypothesis (values of
interest) is that the MIBF has a value which is | ess than 150 hours. To
deci de which hypothesis we will choose, we determine a test exPosure and °
decision criterion. The a risk (producer’s risk) is the probability that the

decision criterion will lead to a rejection decision when in fact the system
meets the specification of 300 hours MIBF. The B risk (consuner’ s risk) is
the probability that the decision criterion will |ead to an acceptance deci -

sion when in fact the systemfalls short of the 150 hours MIBF.
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For a given test, the decision criteria can be altered to change the o« and B
risks . Unfortunately, a decision criterion which decreases one automatically
increases the other. The only way to decrease both risks is to_increase the
test exposure, that is , the nunber of test hours. W address this area bel ow
in Chapter 8 “Reliability Test Planning.”

| NTERFACE BETWEEN HYPOTHESI S TESTI NG AND CONFI DENCE STATEMENTS

In both test planning and data analysis situations, either hypothesis testing
or confidence statenments provide an avenue of approach. The interface between
the two approaches can be best understood through the follow ng exanple.

Suppose a is the desired producer’s risk (¢ = 0.05) for the specified MIBF of
300 hours. Suppose further that Bis the desired consunmer’s risk (B = 0.1)
for the m ninum acceptabl e MIBF of 150 hours. The hypothesis testing approach
determnes a required sanple size and a specified accept/reject criterion. W
show how the same information can be obtained through confidence statenments in

the followng two cases. The abbreviations LCL and UCL represent Lower Con-
fidence Limt and Upper Confidence Limt, respectively.

Note that the distance between the upper and lower limts is the sane as the
di stance between the SV and the MAV. When this is the case we shall always be

able to make a clear-cut decision and the risks associated with the deci sion
will be as specified at the outset of testing.

FIGURE 6-4 ACCEPTANCE DECISION

100 (1-8) % =90 % 100(1-a) % = 95%
LCL FOR MTBF UCL FOR MTBF
| I- i ,1|
-
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MINIMUM SPECIFIED

ACCEPTABLE VALUE

VALUE

Note that in Figure 6-4 the 100(1-B)% = 90% lower limt exceeds the MAV of 150
hour s. In addition, the 100(1-a)% = 95% upper linmit exceeds the specified
val ue of 300 hours. The consuner is 90% confident that the 150-hour MAV has
been net or exceeded and the producer has denonstrated that the system could
reasonably have a 300-hour MTBF. Consequent ly, we woul d make the decision to
accept the system

FIGURE 6-5 REJECTION DECISION

100(1-8)1%=90% 100( 1~a)% =95%
LCL FOR MTBF UCL FOR MTBF
r -] I
MA V = 150 HOURS SV= 300 HOURS
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Note that in Figure 6-5 the 100(1-B)% = 90% lower Iimt falls bel ow the MAV of
150 hours. In addition, the 100(1-cY)% = 95% upper limt falls below the SV of
300 hours. Therefore, the true MIBF could reasonably be bel ow 150 hours and
the producer has not denmpnstrated that an MIBF of 300 hours is reasonabl e.
Consequently, we nmake the decision to reject the system

TEST EXPOSURE

Perhaps one of the nost inportant subjects to be considered in the evaluation
of RAM characteristics is the subject of test exposure. The term“test ex-
posure” refers to the amount (quantity and quality) of testing performed on a
system or systens in an effort to evaluate perfornmance factors. | n Chapter
10, we discuss the qualitative aspects of test exposure which should be con-
sidered by the test designer. The primary purpose of Chapter 8, “Reliability

Test Planning,” is to docunent procedures which ensure that the quantitative
aspects of test planning are adequate.

Recal | the comment we nmade in the previous section to the effect that the
difference in the distance between the upper and |ower confidence <limts was
equal to the difference in the distance between the SV and the NAV. \Wen this
condition is achieved, we have obtained the nost efficient test exposure for
the stated requirenments and risks. Exanples of situations where test exposure
| S I nadequate or excessive are given bel ow. See Case Study 6-2 for an il-
| ustration of the evaluation of a proposed test exposure.

FIGURE 6-6 INADEQUATE TEST DURATION

10 (1-8)%=90% 100(1 -a) 70=95%
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L ] | J
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Note that inFigure 6-6 the 100(1-B)% = 90% lower [imt falls below the MAV of
150 hours.  The 100( 1-cY)% = 95% upper limt exceeds the SV of 300 hours. The
true MIBF coul d reasonably be bel ow 150 hours or above 300 hours. Test ex-
posure is insufficient to discrimnate between the MAV of 150 hours and the SV
of 300 hours with the required risk levels of 10%and 5%. If we reject the
system the producer can legitimately claimthat an MIBF of 300 hours is

reasonable for his system On the other hand, if we accept the system weOay
be fielding an inadequate system
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Note that in Figure 6-7 the 100(1-B)% = 90% lower limt exceeds the MAV of 150
hours.  The 100(1-cY)% = 95% upper limt falls below the SV of 300 hours. The
consumer has 90% confidence that the 150-hour MAV has been net or exceeded.
However, the producer has not denonstrated the specified 300-hour MTBF. The
test exposure is nore than required to obtain the risks of 10% and 5% for the
stated values of MAV and SV. Since the MAV has been net or exceeded, we will
probably accept the system W nmay have paid a premiumto obtain information
that allowed us to construct a confidence interval nore narrow than required.

FIGURE 6-7 EXCESSIVE TEST DURATION
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CASE STUDY NO 6-1

Backgr ound

A contract for a new electronic system specifies an MIBF of 1000 hours. The
m ni mum acceptabl e value is 500 hours MIBF. A design qualification test is to

be conducted prior to production. The test risks are to be 20% for consumner
and 10% for producer.

Det er m ne

Describe the events which Iead to acceptance or rejection of the system-

Sol ution

| n accordance wth procedures defined in Chapter 7, “Reliability Data

Anal ysis,” the appropriate hypothesis test is set up, the sanple is taken, and
the data are anal yzed.

The Positive Chain of Events

1. The contractor has met (or exceeded) an MIBF of 1000 hours.
2. There is (at least) a 0.90 probability of “passing” the test.

3. “Passing” the test will give the user (at |east) 80% confidence that the
MAV of 500 hours MIBF has been exceeded.

4. The user is assured that his needs have been net.

The Negative Chain of Events

1. The contractor has net an MIBF of 500 hours (or |ess).
2. There is (at least) a 0.80 probability of “failing” the test.

3. “Failing” the test gives the procuring activity (at |east) 90% confidence
that the contractually obligated SV of 1000 hours MIBF has not been net.

4. The procuring activity is assured that the contractual obligations have
not been net.
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CASE STUDY NO 6-2

Backgr ound

The specified MIBF of a targeting systemis 500 hours and the m ni mum accept -
abl e MIBF is 400 hours. The contractor has proposed a devel opnent test con-
sisting of 6000 hours on the initial prototype system and 2000 hours on a
second prototype systemwhich will contain some mnor engineering advances.

The proposed test plan of 8000 hours can distinguish between the SV of 600
hours and the MAV of 400hours for consumer’ s and producer’ s risks of slightly

over 20% |f the producer is willing to accept a 30% producer’s risk, the
proposed plan will yield a 12% consumer’ s risk.

Det erm ne

Comment on the adequacy of the proposed test.

Sol ution

These risks seem wbe |arger than should be considered for an inportant
system  The test exposure seens to be inadequate for the foll ow ng reasons:

- Test tinme is not of sufficient |ength.

- Prototypes are not identical . Test tine on the second prototype may
not be long enough to determne if the design i nprovenents increase
reliability,.

- Only two systens on test nmay be insufficient. | deal |y, nore systens

shoul d be used for shorter periods of tine.

A test plan having four systens accunul ati ng about 4000 hours each wll yield
producer and consuner risks of just over 10% A further benefit is that using
four systems and operating themfor a period of time about 10 tines the mni-
mum MIBF should paint a pretty clear picture of the system capability through-
out a significant part of its expected age.

Note :  Chapter 8 will present the analytical tools required to evaluate the

above test plan. Qur objective here is to qualitatively review the
various aspects of a statistically relevant test program
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